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Abstract. This paper is devoted to the study of relationships between several kinds of gen-
eralized invexity of locally Lipschitz functions and generalized monotonicity of correspond-
ing Clarke’s subdifferentials. In particular, some necessary and sufficient conditions of being
a locally Lipschitz function invex, quasiinvex or pseudoinvex are given in terms of mom-
otonicity, quasimonotonicity and pseudomonotonicity of its Clarke’s subdifferential, respec-
tively. As an application of our results, the existence of the solutions of the variational-like
inequality problems as well as the mathematical programming problems (MP) is given. Our
results extend and unify the well known earlier works of many authors.
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1. Introduction

It is well known that the generalized monotonicity of set-valued map-
ping plays an important role in studying the existence and the sensitivity
analysis of solutions for variational inequalities, variational inclusions, and
complementarity problems. Convexity also plays a central role in math-
ematical economics, engineering, management sciences and optimization.
In recent years several extensions and generalizations have been consid-
ered for classical convexity. A significant generalization of convex func-
tions is that of invex functions introduced by Hanson (1981). His initial
result inspired a great deal of subsequent work which has greatly expanded
the role and applications of invexity in non-linear optimization and other
branches of pure and applied sciences. In fact he has shown that the Kuhn–
Tuker conditions are sufficient for optimality of non-linear programming
problems under invexity conditions. Kaul and Kaur (1985) presented the
notions of strictly pseudoinvex, and quasinvex functions, and investigated
their applications in non-linear programming. Weir and Mond (1988) and
Weir and Jeyakumar (1988) have studied the basic properties of preinvex
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functions and their applications in optimization, Pini (1991) introduced the
concepts of prepseudoinvex and prequasiinvex functions and established
the relationships between invexity and generalized invexity. Mohan and
Neogy (1995) showed that under certain assumptions, an invex function is
preinvex and a quasiinvex function is prequasiinvex. More recently, char-
acterizations and applications of preinvex functions, semistrictly preinvex
functions, prequasiinvex functions, and semistrictly prequasiinvex functions
were studied by Yang and Li (2001) and Yang et al. (2001). The relation-
ships between generalized convexity of functions and generalized mono-
tone operators have been investigated by many authors; see Karamardian
and Schaible (1990), Correa et al. (1992), Penot and Quang (1992), Luc
(1993a,b, 1994), Penot and Sach (1997), Fan et al. (2003), Bianchi and
Schaible (2004) and the recent Hadjisavvas et al.’s Handbook (2005). Simi-
lar to the case of convexity, Garzon et al. (2003), Yang et al. (2003) and
Lue and Xu (2004) obtained analogous results for invexity and general-
ized invexity. Motivated by the work of Yang et al. (2003, 2005) and Fan
et al. (2003) we study relationships between several kinds of generalized
invexity of locally Lipschitz functions and generalized monotonicity of
corresponding Clarke’s subdifferentials. Indeed by using the techniques of
Yang et al. (2001, 2003, 2005), some necessary and sufficient conditions
of being a locally Lipschitz function invex, quasiinvex or pseudoinvex
are given in terms of momotonicity, quasimonotonicity and pseudomo-
notonicity of its Clarke’s subdifferential, respectively. As an application of
our results, the existence of the solutions of the variational-like inequal-
ity problems as well as the mathematical programming problems (MP) is
given.

2. Preliminaries

Let X be a real Banach space endowed with a norm ‖ .‖ and X∗ its dual
space with a norm ‖ .‖∗. We denote by 2X∗

, 〈., .〉, [x, y], and (x, y) the fam-
ily of all non-empty subsets of X∗, the dual pair between X and X∗, the
line segment for x, y ∈X, and the interior of [x, y], respectively. Let K be a
non-empty open subset of X,T :X→2X∗ a set-valued mapping, η:X×X→
X a vector-valued function, and f : X →R a non-differentiable real-valued
function. The following concepts and results are taken from Clarke et al.
(1998).

DEFINITION 2.1. Let f be locally Lipschitz at a given point x ∈X and v

any vector in X. The Clarke’s generalized directional derivative of f at x

in the direction v, denoted by f ◦(x;v), is defined by
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f ◦(x;v)= lim sup
y→x,t↓0

f (y + tv)−f (y)

t
.

DEFINITION 2.2. Let f be locally Lipschitz at a given point x ∈X and v

any vector in X. The Clarke’s generalized subdifferential of f at x, denoted
by ∂cf (x), is defined as follows:

∂cf (x)={ξ ∈X∗:f ◦(x;v)� 〈ξ, v〉,∀v ∈X}.

LEMMA 2.1. Let f be locally Lipschitz with a constant L at x ∈X. Then:

(1) ∂cf (x) is a non-empty convex, weak∗–compact subset of X∗ and ‖ξ ‖∗�
L for each ξ ∈ ∂cf (x).

(2) For every v ∈X,f ◦(x;v)=max{〈ξ, v〉: ξ ∈ ∂cf (x)}.
(3) ξ ∈ ∂cf (x) if and only if f ◦(x;v)� 〈ξ, v〉 ∀v ∈X.
(4) If {xi}, {ξi} are sequences in X and X∗ such that ξi ∈∂cf (xi) for each i,

and if xi converges to x, and ξ is a weak∗–cluster point of the sequence
{ξi}, then we have ξ ∈ ∂cf (x).

LEMMA 2.2 (Mean Value Theorem). Let x and y be point in X and sup-
pose that f is Lipschitz near each points of a non-empty closed convex set
containing the line segment [x, y]. Then there exists a point u ∈ (x, y) such
that

f (x)−f (y)∈〈∂cf (u), x −y〉.

3. Invexity and Invariant Monotonicity

In this section, we establish the relationships between (strict, strong) invex-
ity of f and (strict, strong) invariant monotonicity of its Clarke’s general-
ized subdifferential mapping ∂cf .

DEFINITION 3.1. A subset K of X is said to be invex with respect to η:
X ×X →X if, for any x, y ∈K and λ∈ [0,1], y +λη(x, y)∈K.

In this paper, we suppose that X is a Banach space, η:X×X→X is a vec-
tor-valued function, K ⊂X is an invex set with respect to η, f :X→R is a
function, and T :X →2X∗ is a set-valued mapping.

Following Definitions 2.3, 2.6 of Yang et al. (2003) and 3.2 of Fan et al.
(2003), we present the following definition.
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DEFINITION 3.2. Let T :X →2X∗ be a set-valued mapping:

(1) T is said to be invariant monotone (IM) on K with respect to η if for
any x, y ∈K and any u∈T (x), v ∈T (y), one has

〈v, η(x, y)〉+〈u, η(y, x)〉�0;

(2) T is said to be strictly invariant monotone (SIM) on K with respect to
η if for any x, y ∈K with x �=y and any u∈T (x), v ∈T (y), one has

〈v, η(x, y)〉+〈u, η(y, x)〉<0;

(3) T is said to be strongly invariant monotone (SGIM) on K with respect
to η if there exist a constant α >0 such that for any x, y ∈K and any
u∈T (x), v ∈T (y), one has

〈v, η(x, y)〉+〈u, η(y, x)〉�−α(‖η(x, y)‖2 +‖η(y, x)‖2).

REMARK 3.1. Every strictly invariant monotone map is an invariant
monotone map with respect to η, but the converse is not necessarily true,
The following example due to Yang et al. (2003) shows that strictly invari-
ant monotone map differs from strongly invariant map in general.

EXAMPLE 3.1. Define the maps F and η as

F(x)= (1+ cosx1,1+ cosx2), x = (x1, x2)∈K,

η(x, y)= [(sin x1 − sin y1)/ cosy1, (sin x2 − sin y2)/ cosy2], x, y ∈K,

where K = (0, π/2)× (0, π/2). Then F is a strictly invariant monotone map
with respect to η, but F is not strongly invariant monotone map with
respect to η on K. If K ′ = (π/6, π/3) × (π/6, π/3) then F is a strongly
invariant monotone map with respect to η on K ′.

By Definition 2.4 of Yang et al. (2003) and Definition 3.1 of Fan et al.
(2003), we present the following definition.

DEFINITION 3.3. Let K be an invex set with respect to η and f :K →R:

(1) f is said to be preinvex (PX) with respect to η on K if for any x, y ∈K

and λ∈ [0,1], one has

f (y +λη(x, y))�λf (x)+ (1−λ)f (y);
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(2) f is said to be strictly preinvex (SPX) with respect to η on K if for
any x, y ∈K with x �=y and for any λ∈ (0,1), one has

f (y +λη(x, y))<λf (x)+ (1−λ)f (y);

(3) f is said to be strongly preinvex (SGPX) with respect to η on K if
there exist a constant α > 0 such that for any x, y ∈ K and λ ∈ [0,1],
one has

f (y +λη(x, y))�λf (x)+ (1−λ)f (y)−αλ(1−λ)‖η(x, y)‖2 .

The following assumptions are useful in the sequel.

ASSUMPTION A. Let K be an invex set with respect to η, and let f :K →R.
Then,

f (y +η(x, y))�f (x) for any x, y ∈K.

ASSUMPTION C. Let η: X × X → X. Then, for any x, y ∈ X and for any
λ∈ [0,1].

η(y, y +λη(x, y))=−λη(x, y),

η(x, y +λη(x, y))= (1−λ)η(x, y).

REMARK 3.2. Recently Yang et al. (2005) have shown that if η:X×X→
X satisfies Assumption C, then

η(y +λη(x, y), y)=λη(x, y).

By definition of invex function in Banach spaces and Definition 3.1 of Fan
et al. (2003), we give the following definition.

DEFINITION 3.4. Let f be locally Lipschitz on K, Then:

(1) function f : K → R is said to be invex (IX) with respect to η on K if
for any x, y ∈K and any ζ ∈ ∂cf (y), one has

〈ζ, η(x, y)〉�f (x)−f (y);

(2) function f : K →R is said to be strictly invex (SIX) with respect to η

on K if for any x, y ∈K with x �=y and any ζ ∈ ∂cf (y), one has

〈ζ, η(x, y)〉<f (x)−f (y);
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(3) f is said to be strongly invex (SGIX) with respect to, η on K if there
exists a constant α > 0 such that for any x, y ∈K and any ζ ∈ ∂cf (y),
one has

〈ζ, η(x, y)〉+α ‖η(x, y)‖2�f (x)−f (y).

Here, we show that different kinds of invexity with respect to η imply
monotonicity of subdifferential with respect to η.

LEMMA 3.1. Let f be locally Lipschitz on K. If f is (strongly, strictly) in-
vex with respect to η on K, then ∂cf is (strongly, strictly) invariant monotone
with respect to η on K.

Proof. We prove only the assertion strongly and with α=0 and by replac-
ing � and � by < and >, the other cases can be proved similarly. Sup-
pose that f is strongly invex with respect to η on K. Then for x, y ∈ K,

ζ ∈ ∂cf (y) and γ ∈ ∂cf (x), by strong invexity of f , we have

f (x)−f (y)� 〈ζ, η(x, y)〉+α ‖η(x, y)‖2,

and

f (y)−f (x)� 〈γ, η(y, x)〉+α ‖η(y, x)‖2 .

By adding these two relations, we have

0� 〈ζ, η(x, y)〉+〈γ, η(y, x)〉+α(‖η(y, x)‖2 +‖η(y, x)‖2).

Then, ∂cf is strongly invariant monotone with respect to η on K.

In the following theorem we will show the inverse implications of the above
Lemma hold in the presence of Assumptions A and C.

THEOREM 3.1. Let f be locally Lipschitz on K and f and η satisfy
Assumptions A and C. If ∂cf is (strongly, strictly) invariant monotone with
respect to η on K, then f is (strongly, strictly) invex with respect to η on K.

Proof. We prove only the assertion strongly and with α=0 and by replac-
ing � and � by < and >, the other cases can be proved similarly. Let
∂cf be strongly invariant monotone with respect to η on K with constant
α >0, x, y ∈K and w∈∂cf (y). Let z=y + 1

2η(x, y), then by the Mean Value
Theorem, there exist λ1, λ2 such that 0 < λ2 < 1

2 < λ1 < 1 and there exist
ζ ∈ ∂cf (u) and γ ∈ ∂cf (v) such that

f (y +η(x, y))−f (z)=〈ζ, y +η(x, y)− z〉= 1
2
〈ζ, η(x, y)〉 (3.1)
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and

f (z)−f (y)=〈γ, z−y〉= 1
2
〈γ, η(x, y)〉, (3.2)

where u=y +λ1η(x, y) and v=y +λ2η(x, y). Since ∂cf is a strongly invari-
ant monotone operator and ζ ∈ ∂cf (u) and w ∈ ∂cf (y), we have

〈ζ, η(y, u)〉+〈w,η(u, y)〉�−α(‖η(y, u)‖2 +‖η(u, y)‖2). (3.3)

On the other hand by Assumption C and Remark 3.2, we have

η(u, y)=η(y +λ1η(x, y), y)=λ1η(x, y),

and

η(y, u)=η(y, y +λ1η(x, y))=−λ1η(x, y).

If we replace these values in (3.3) and divide by λ1, we obtain

〈ζ, η(x, y)〉�2αλ1 ‖η(x, y)‖2 +〈w,η(x, y)〉. (3.4)

In a similar way, we have

〈γ, η(y, v)〉+〈w,η(v, y)〉�−α(‖η(y, v)‖2 +‖η(v, y)‖2), (3.5)

where η(v, y)=λ2η(x, y) and η(y, v)=−λ2η(x, y). By replacing again these
values in (3.5) and dividing by λ2, we have

〈γ, η(x, y)〉�2αλ2 ‖η(x, y)‖2 +〈w,η(x, y)〉. (3.6)

Then by (3.4), (3.6), (3.1) and (3.2) we derive

f (y +η(x, y))−f (z)�αλ1 ‖η(x, y)‖2 +1
2
〈w,η(x, y)〉,

and

f (z)−f (y)�αλ2 ‖η(x, y)‖2 +1
2
〈w,η(x, y)〉.

By adding these two relations, we obtain

f (y +η(x, y))−f (y)�α(λ1 +λ2)‖η(x, y)‖2 +〈w,η(x, y)〉
� α

2
‖η(x, y)‖2 +〈w,η(x, y)〉.
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But Assumption A implies that

f (x)−f (y)� α

2
‖η(x, y)‖2 +〈w,η(x, y)〉.

Therefore, f is strongly invex.

In the next part of this section we will establish the relationships between
different kinds of invexity and preinvexity.
The following lemmas are similar to Theorem 2.1 of Mohan and Neogy (1995).

LEMMA 3.2. Let f be locally Lipschitz on K and f and η satisfy Assump-
tions A and C. If f is (strongly, strictly) invex with respect to η on K, then
f is (strongly, strictly) preinvex with respect to η on K.

Proof. We prove only the assertion strongly and with α=0 and by replac-
ing � and � by < and >, the other cases can be proved similarly. Suppose
that f is strongly invex with respect to η on K with constant α>0, x, y ∈K

and 0 < λ < 1 be given and set x̄ = y + λη(x, y). Note that x̄ ∈ K. By the
strong invexity of f , we have

f (x)−f (x̄)� 〈ζ, η(x, x̄)〉+α ‖η(x, x̄)‖2 for each ζ ∈ ∂cf (x̄). (3.7)

Similarly, the strong invexity condition applied to the pair y, x̄ yields

f (y)−f (x̄)� 〈ζ, η(y, x̄)〉+α ‖η(y, x̄)‖2 for each ζ ∈ ∂cf (x̄). (3.8)

We note that by Assumption C,

η(x, x̄)= (1−λ)η(x, y), η(y, x̄)=−λη(x, y).

Now, multiplying (3.7) by λ and (3.8) by (1−λ) and adding, then

λf (x)+ (1−λ)f (y)−f (x̄)

� 〈ζ, λη(x, x̄)+ (1−λ)η(y, x̄)〉+αλ(1−λ)‖η(x, y)‖2

=αλ(1−λ)‖η(x, y)‖2 .

Hence, the conclusion follows.

LEMMA 3.3. Let η be continuous with respect to the second argument. Sup-
pose that f is locally Lipschitz on K and f is (strongly) preinvex with
respect to η, then f is (strongly) invex with respect to η on K.

Proof. We prove only the assertion strongly and with α=0, the other case
can be proved similarly. Suppose that f is strongly preinvex with respect
to η on K and let x, y ∈ K and ε > 0 be arbitrary. Let L be a Lipschitz
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constant of f in a neighborhood of y. Since η is continuous in the second
argument, there exists δ > 0 such that if ‖ y − z ‖� δ, then |f (y) − f (z)| <
ε/3,‖η(x, y)−η(x, z)‖<ε/3L and (‖η(x, y)‖2 −‖η(x, z)‖2)<ε/3α, Hence
for every y ∈K, with ‖y −z‖<γ,0<γ <δ, and 0<λ<β for a small enough
β >0, one has

f (z+λη(x, y))−f (z)

λ
� f (z+λη(x, z))−f (z)

λ
+L‖η(x, y)−η(x, z)‖

� λf (x)+ (1−λ)f (z)−αλ(1−λ)‖η(x, z)‖2 −f (z)

λ
+ ε

3
�f (x)−f (y)−α(1−λ)‖η(x, y)‖2 +ε,

then

f ◦(y, η(x, y))= inf
γ>0,β>0

sup
‖z−y‖<γ,0<λ<β

f (z+λη(x, y))−f (z)

λ

�f (x)−f (Y )−α ‖η(x, y)‖2 +ε.

Since ε >0 is arbitrary, hence for any ζ ∈ ∂cf (y), we have

〈ζ, η(x, y)〉�f ◦(y, η(x, y))�f (x)−f (y)−α ‖η(x, y)‖2 .

Thus f is strongly preinvex.

From Theorem 3.1 and Lemmas 3.1, 3.2, and 3.3 we deduce the follow-
ing result.

THEOREM 3.2. Let f be locally Lipschitz on K and f and η satisfy
Assumptions A and C. If η is continuous with respect to the second argument,
then the following assertions are equivalent:

(1) f is (strongly) invex on K with respect to η.
(2) ∂cf is (strongly) invariant monotone on K with respect to η.
(3) f is (strongly) preinvex on K with respect to η.

4. Quasiinvexity and Invariant Quasimonotonicity

In this section, we establish the relationships between quasiinvexity of the
non-differentiable function f and quasimonotonicity of its Clarke’s sub-
differential ∂cf .

DEFINITION 4.1. A set-valued mapping T is said to be invariant quasi-
monotone (IQM) on K with respect to η if, for any x, y ∈K and any u∈
T (x), v ∈T (y), one has



546 JABAROOTIAN AND ZAFARANI

〈u, η(y, x)〉>0⇒〈v, η(x, y)〉�0.

DEFINITION 4.2. f is said to be prequasiinvex (PQX) with respect to η

on K if for any x, y ∈K,0�λ�1, one has

f (y +λη(x, y))�max{f (x), f (y)}.

Trivially from Definitions 3.3 and 4.2, we have

(SGPX)⇒ (PX)⇒ (PQX).

DEFINITION 4.3. Let f be locally Lipschitz on K.Then f is said to be
quasiinvex (QIX) with respect to η if for any x, y ∈K and any ζ ∈ ∂cf (x),
one has

f (y)�f (x)⇒〈ζ, η(y, x)〉�0.

The following lemma is similar to Theorem 2.2 of Mohan and Neogy
(1995) in non-differentiable setting.

LEMMA 4.1. Let f be locally Lipschitz on K and η satisfy Assumption C.
If, for ever pair of points x, y ∈K, with x �=y and any ζ ∈ ∂cf (x), one has

(D) f (y)<f (x)⇒〈ζ, η(y, x)〉�0.

Then, the function f is prequasiinvex with respect to η on K. If η is contin-
uous with respect to the second argument, the converse holds.

Proof. Suppose that condition (D) holds. Let x, y ∈ K,f (x) � f (y) and
consider the set

�={z : z=y +λη(x, y), f (z)>f (y), 0�λ�1}.

In order to show that f is prequasiinvex, we have to show that � �=∅. Note
that if � �=∅, then by continuity of f , the set

�′ = {z : z=y +λη(x, y), f (z)>f (y), 0<λ<1}

is also non-empty. Hence, it suffices to show that �′ = ∅ to complete the
proof.
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Suppose now that x̄ ∈ �′. Then we have x̄ = y + λ̄η(x, y), for some 0 <

λ̄< 1 and f (x̄)>f (y)�f (x). Consider the pair x̄ and x. By (D), for any
ζ ∈ ∂cf (x̄),

〈ζ, η(x, x̄)〉�0, (4.1)

and for x̄, y, we have

〈ζ, η(y, x̄)〉�0. (4.2)

Hence by Assumption C and (4.1) and (4.2), we have

(1− λ̄)〈ζ, η(x, y)〉�0, (4.3)

and

−λ̄〈ζ, η(x, y)〉�0. (4.4)

Now (4.3) and (4.4), together with the fact that 0 < λ̄ < 1, imply that for
any ζ ∈ ∂cf (x̄)

〈ζ, η(x, y)〉=0. (4.5)

Note that (4.5) holds for any x̄ ∈�′. Now suppose that �′ �= ∅, Let x̄ ∈�′

and let x̄ = y + λ̄η(x, y). By continuity of f , we can find 0 �λ∗ <λ̄< λ̂<

1 such that for all λ ∈ (λ∗, λ̂), we have f (y + λη(x, y)) > f (y), therefore,
(y + λη(x, y)) ∈ �′ and f (y + λ∗η(x, y)) = f (y). Now, by the Mean Value
Theorem there exist λ̃∈ (λ∗, λ̄) and γ ∈ ∂cf (y + λ̃η(x, y)) such that

f (y + λ̄η(x, y))−f (y)=f (y + λ̄η(x, y))−f (y +λ∗η(x, y))

=〈γ, (λ̄−λ∗)η(x, y)〉.

The left-hand side is positive by our hypothesis, but the right-hand side is
zero by (4.5). As y + λ̃η(x, y)∈�′, hence, we have a contradiction, In the
case where f (y)�f (x) the proof is similar.

Conversely, suppose that f is prequasiinvex with respect to η on K

and η is continuous with respect to the second argument. Let x, y ∈ K

and f (y) < f (x), then by continuity of f there exists δ > 0 such that for
‖ z − x ‖< δ, we have f (y) < f (z). Then the prequasiinvexity of f implies
that

f (z+λη(y, z))�f (z) for ‖ z−x ‖<δ.
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If L is a Lipschitz constant of f near the point x, then for δ > 0 small
enough, and for ‖ z−x ‖<δ,0<λ<δ, one has

f (z+λη(y, x))−f (z)

λ
� f (z+λη(y, z))−f (z)

λ
+L‖η(y, z)−η(y, x)‖

�0+L‖η(y, z)−η(y, x)‖ .

By continuity of η with respect to the second argument, we have

f ◦(x, η(y, x))= lim
δ→0

sup
‖z−x‖<δ,0<λ<δ

f (z+λη(y, x))−f (z)

λ
�0,

hence for any ζ ∈ ∂cf (x), we obtain

〈ζ, η(y, x)〉�0,

and condition (D) holds.

From Lemma 4.1 and Definition 4.3, we can obtain the following corollary.

COROLLARY 4.1. Let f be locally Lipschitz on K and η satisfy Assump-
tion C. If f is quasiinvex with respect to η on K, then it is prequasiinvex
with respect to η on K.

In the following result, we obtain a refinement of Theorem 3.1 of Yang
et al. (2003).

THEOREM 4.1. Let f be locally Lipschitz on K. Suppose the following
assertions hold:

(1) f is quasiinvex with respect to η on K.
(2) ∂cf is invariant quasimonotone with respect to η on K.
(3) f is prequasiinvex with respect to η on K.

Then (1)⇒ (2). If η satisfies Assumption C and, for all x, y ∈K

(B) f (y +η(x, y))�max{f (x), f (y)},

then (2)⇒ (3).
Proof. Suppose (1) holds. Let x, y ∈K,u∈∂cf (x) and v ∈∂cf (y) be such

that

〈u, η(y, x)〉>0,
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By quasiinvexity of f , we have f (x)<f (y). Hence again quasiinvexity of
f implies that

〈v, η(y, x)〉�0.

Therefore (2) holds.
Suppose (2) holds. Assume that there exist x, y ∈K such that f (y)�f (x)

and a λ̄∈ (0,1) such that

f (y + λ̄η(x, y))>f (x)�f (y). (4.6)

By the Mean value Theorem, there exist λ1, λ2 ∈ (0,1),0 < λ2 < λ̄ < λ1 < 1
and ζ ∈ ∂cf (y +λ1η(x, y)) such that

f (y + λ̄η(x, y))−f (y +η(x, y))= (λ̄−1)〈ζ, η(x, y)), (4.7)

and there exists γ ∈ ∂cf (y +λ2η(x, y)) such that

f (y + λ̄η(x, y))−f (y))= λ̄〈γ, η(x, y)〉. (4.8)

From Assumption C and Remark 3.2, we have

η(y +λ2η(x, y), y +λ1η(x, y))

=η(y +λ2η(x, y), y +λ2η(x, y)+ (λ1 −λ2)η(x, y))

=η

(
y +λ2η(x, y), y +λ2η(x, y)+ λ1 −λ2

1−λ2
η(x, y +λ2η(x, y))

)

= λ2 −λ1

1−λ2
η(x, y +λ2η(x, y))= (λ2 −λ1)η(x, y), (4.9)

and

η(y +λ1η(x, y), y +λ2η(x, y))

=η(y +λ2η(x, y)+ (λ1 −λ2)η(x, y), y +λ2η(x, y))

=η

(
y +λ2η(x, y)+ λ1 −λ2

1−λ2
η(x, y +λ2η(x, y)), y +λ2η(x, y)

)

= λ1 −λ2

1−λ2
η(x, y +λ2η(x, y))= (λ1 −λ2)η(x, y). (4.10)

Then, from (4.6), (4.7), (4.9) and inequality (B), we obtain

0�f (x)−f (y +η(x, y))<f (y + λ̄η(x, y))−f (y +η(x, y))

= (1− λ̄)〈ζ,−η(x, y)〉= 1− λ̄

λ1 −λ2
〈ζ, η(y +λ2η(x, y), y +λ1η(x, y))〉.
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Hence, we have

0< 〈ζ, η(y +λ2η(x, y), y +λ1η(x, y))〉. (4.11)

From (4.6), (4.8) and (4.10), we deduce that

0<f (y + λ̄η(x, y))−f (y)

= λ̄〈γ, η(x, y)〉= λ̄

λ1 −λ2
〈γ, η(y +λ1η(x, y), y +λ2η(x, y))〉.

Thus, we have

0< 〈γ, η(y +λ1η(x, y), y +λ2η(x, y))〉. (4.12)

Two inequalities (4.11) and (4.12) contradict the invariant quasimonotonici-
ty of ∂cf with respect to η. In the case where f (x)<f (y)<f (y +�λη(x, y)),
the proof is similar.

EXAMPLE 4.1. Let K = R, η(x, y) = 3(x − y), and f (x) = |x|. Then f is
quasiinvex with respect to η but not prequasiinvex with respect to η.

Now we present a non-differentiable version of Theorem 3.1 of Peng
(2005).

THEOREM 4.2. Let M be an open convex subset of X and f : M → R

locally Lipschitz on M. Suppose that η is affine in the first argument and for
each x ∈M, η(x, x)=0, and for each x �=y,

f (x)�f (y)⇒∃x̄ ∈ (x, y), ∃u∈ ∂cf (x̄), 〈u, η(x, x̄)〉>0.

If ∂cf is invariant quasimonotone with respect to η on M, then f is quasiin-
vex with respect to η on M.

Proof. Let x, y ∈M, such that

f (y)�f (x). (4.13)

If x =y, then for each ζ ∈ ∂cf (x), we have

〈ζ, η(y, x)〉=0.

If x �= y by (4.13) and our conditions there exist λ̄ ∈ (0,1) and u ∈ ∂cf (x̄)

such that 〈u, η(x, x̄)〉>0, where x̄ = λ̄x + (1− λ̄)y. Invariant quasimonoton-
ocity of ∂cf implies that for each ζ ∈ ∂cf (x), we have

〈ζ, η(x̄, x)〉�0. (4.14)
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By the hypothesis on η, we deduce

λ̄〈ζ, η(x, x)〉+ (1− λ̄)〈ζ, η(y, x)〉=〈ζ, η(x̄, x)〉�0.

Since 0<λ̄<1 and η(x, x)=0, we have

〈ζ, η(y, x)〉�0.

Hence, f is a quasiinvex function with respect to η on M.

THEOREM 4.3. Let f be locally Lipschitz on K, η satisfy Assumption C
and for each x �= y there exist λ̄∈ (0,1) and ζ ∈ ∂cf (y + λ̄η(x, y)) such that
〈ζ, η(x, y)〉 < 0. If ∂cf is invariant quasimonotone with respect to η on K,
then f is quasiinvex with respect to η on K.

Proof. Suppose that ∂cf is invariant quasimonotone with respect to η on
K. Let x, y ∈ K and f (y) � f (x). If x = y, by Assumption C, η(x, y) = 0.
Let x �= y, then there exist λ̄ ∈ (0,1) and ζ ∈ ∂cf (y + λ̄η(x, y)) such that
〈ζ, η(x, y)〉<0. From Assumption C, we obtain

〈ζ, η(y, y + λ̄η(x, y))〉>0.

Invariant quasimonotonicity of ∂cf implies that for each γ ∈ ∂cf (y),

〈γ, η(y + λ̄η(x, y), y)〉�0.

Then by Remark 3.2, for each γ ∈ ∂cf (y), we have

〈γ, η(x, y)〉�0.

Hence f is quasiinvex with respect to η on K.

REMARK 4.1. Theorem 4.3 improves Theorem 3.1 of Yang et al. (2005).

5. Pseudoinvexity and Invariant Pseudomonotonicity

In this section, we establish the relationships between pseudoinvexity of
the non-differentiable function f and pseudomonotonicity of the set-valued
mapping ∂cf .

DEFINITION 5.1. Let f be locally Lipschitz on K. Then:

(1) function f is said to be pseudoinvex (PIX) with respect to η on K if
for any x, y ∈K and any ζ ∈ ∂cf (x), one has

〈ζ, η(y, x)〉�0⇒f (y)�f (x);



552 JABAROOTIAN AND ZAFARANI

(2) function f is said to be strictly pseudoinvex (SPIX) with respect to η

on K if for any x, y ∈K with x �=y and any ζ ∈ ∂cf (x), one has

〈ζ, η(y, x)〉�0⇒f (y)>f (x);

(3) f is said to be strongly pseudoinvex (SGPIX) with respect to η on
K if there exists a constant α > 0 such that for any x, y ∈K and any
ζ ∈ ∂cf (x), one has

〈ζ, η(y, x)〉�0⇒f (y)�f (x)+α‖η(y, x)‖2.

By Definitions 3.4, 4.3 and 5.1, we have (SIX)⇒ (SPIX), and

(SGIX) �⇒ (IX) �⇒ (QIX)

⇓ ⇓
(SGPIX) �⇒ (PIX)

DEFINITION 5.2. Let T :X →2X∗
be a set-valued mapping:

(1) T is said to be an invariant pseudomonotone (IPM) operator on K with
respect to η if, for any x, y ∈K and any u∈T (x), v ∈T (y), one has

〈u, η(y, x)〉�0⇒〈v, η(x, y)〉�0;

(2) T is said to be a strictly invariant pseudomonotone (SIPM) operator
on K with respect to η if, for any x, y ∈ K with x �= y and any u ∈
T (x), v ∈T (y), one has

〈u, η(y, x)〉�0⇒〈v, η(x, y)〉<0;

(3) T is said to be a strongly invariant pseudomonotone (SGIPM) oper-
ator on K with respect to η if there exists a constant α > 0 such that
for any x, y ∈K and any u∈T (x), v ∈T (y), one has

〈u, η(y, x)〉�0⇒〈v, η(x, y)〉�−α‖η(y, x)‖2.

By the Definitions 3.2, 4.1 and 5.2, we have

(SGIM) �⇒ (IM)

⇓ ⇓
(SGIPM) �⇒ (IPM) �⇒ (IQM)

THEOREM 5.1. Let f be locally Lipschitz on K and, f and η satisfy
Assumptions A and C, respectively. If ∂cf is invariant pseudomonotone with
respect to η on K, then f is pseudoinvex with respect to η on K.
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Proof. Suppose that ∂cf is invariant pseudomonotone with respect to η

on K. Let x, y ∈K, and

f (y)<f (x). (5.1)

By the Mean Valued Theorem, there exist λ̄ ∈ (0,1) and γ ∈ ∂cf (x +
λ̄η(y, x)) such that

f (x +η(y, x))−f (x)=〈γ, η(y, x)〉. (5.2)

By Assumptions A and C, it follows that

f (x +η(y, x))�f (y), (5.3)

and

η(x, x + λ̄η(y, x))=−λ̄η(y, x). (5.4)

Now, from (5.1) to (5.4), we have

〈γ, η(x, x + λ̄η(y, x))〉>0. (5.5)

Since ∂cf is invariant pseudomonotone with respect to η, it follows from
(5.5) for each ζ ∈ ∂cf (x) we have

〈ζ, η(x + λ̄η(y, x), x)〉<0.

From Remark 3.2, we obtain

〈ζ, η(y, x)〉<0.

Hence, f is pseudoinvex with respect to η.

REMARK 5.1. Theorem 5.1 improves Lemma 4.1 of Yang et al. (2003).

LEMMA 5.1. Let f be locally Lipschitz on K. If f is strictly pseudoinvex
with respect to η on K, then ∂cf is strictly invariant pseudomonotone with
respect to η on K.

Proof. Suppose that f is strictly pseudoinvex with respect to η on K. Let
x, y ∈K, x �=y, and ζ ∈ ∂cf (x) be such that

〈ζ, η(y, x)〉�0. (5.6)



554 JABAROOTIAN AND ZAFARANI

We need to show that for any γ ∈ ∂cf (y) we have 〈γ, η(x, y)〉< 0. On the
contrary, we assume that

〈γ, η(x, y)〉�0.

From the strict pseudoinvexity of f with respect to η, it follows that

f (x)>f (y). (5.7)

On the other hand, the strict pseudoinvexity of f with respect to η and
(5.6) imply that

f (y)>f (x),

which contradicts (5.7).

THEOREM 5.2. Let f be locally Lipschitz on K and, f and η satisfy
Assumptions A and C, respectively. If ∂cf is strictly invariant pseudomono-
tone with respect to η on K, then f is strictly pseudoinvex with respect to η

on K.
Proof. Suppose that ∂cf is strictly invariant pseudomonotone with

respect to η on K. Let x, y ∈K, x �=y, and

f (y)�f (x). (5.8)

By the Mean Value Theorem, there exist λ̄∈ (0,1) and γ ∈∂cf (x + λ̄η(y, x))

such that

f (x +η(y, x))−f (x)=〈γ, η(y, x)〉. (5.9)

By Assumptions A,

f (x +η(y, x))�f (y). (5.10)

Now, from (5.8) to (5.10) and Assumption C, we have

〈γ, η(x, x + λ̄η(y, x))〉=−λ̄〈γ, η(y, x)〉�0. (5.11)

Since ∂cf is strictly invariant pseudomonotone with respect to η, we con-
clude that for each ζ ∈ ∂cf (x),

〈ζ, η(x + λ̄η(y, x), x)〉<0. (5.12)
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From Remark 3.2, we deduce

η(x + λ̄η(y, x), x)= λ̄η(y, x).

Thus, it follows from (5.12) that

〈ζ, η(y, x)〉<0.

Therefore, f is strictly pseudoinvex with respect to η on K.

REMARK 5.2. Lemma 5.1 and Theorem 5.2 improve Theorem 5.1 of
Yang et al. (2003).

THEOREM 5.3. Let f be locally Lipschitz on K and, f and η satisfy
Assumptions A and C, respectively. If ∂cf is strongly invariant pseudomono-
tone with respect to η on K, then f is strongly pseudoinvex with respect to
η on K.

Proof. Suppose that ∂cf is strongly invariant pseudomonotone with
respect to η on K. Let x, y ∈K, and ζ ∈ ∂cf (x) be such that

〈ζ, η(y, x)〉�0.

Set z = x + 1/2η(y, x). By the Mean Value Theorem, there exist λ1, λ2 ∈
(0,1),0<λ2 <1/2<λ1 <1, σ ∈ ∂cf (u), where u=x +λ2η(y, x) such that

f (z)−f (x)=〈σ, z−x〉= 1
2
〈σ, η(y, x)〉.

Hence by Assumption C, we have

f (z)−f (x)= −1
2λ2

〈σ, η(x, u)〉, (5.13)

and there exists γ ∈ ∂cf (v) where v =x +λ1η(y, x), such that

f (x +η(y, x))−f (z)=〈γ, x +η(y, x)− z〉= 1
2
〈γ, η(y, x)〉.

Thus by Assumption C, we have

f (x +η(y, x))−f (z)=− 1
2λ1

〈γ, η(x, v)〉. (5.14)

On the other hand by Remark 3.2, we derive

0� 〈ζ, η(y, x)〉= 1
λ1

〈ζ, η(v, x)〉= 1
λ2

〈ζ, η(u, x)〉.
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By strongly invariant pseudomonotonicity of ∂cf , we obtain

〈σ, η(x, u)〉�−α‖η(u, x)‖2 =−αλ2
2‖η(y, x)‖2,

and

〈γ, η(x, v)〉�−α‖η(v, x)‖2 =−αλ2
1‖η(y, x)‖2.

Then by (5.13)

f (z)−f (x)� α

2
λ2‖η(y, x)‖2,

and by (5.14), we deduce that

f (x +η(y, x))−f (z)� α

2
λ1‖η(y, x)‖2.

Adding these two inequalities, we have

f (x +η(y, x))−f (x)� α

2
(λ1 +λ2)‖η(y, x)‖2,

therefore by Assumption A, we obtain

f (y)−f (x)� α

4
‖η(y, x)‖2.

REMARK 5.3. Theorem 5.3 improves Theorem 4.3 of Fan et al. (2003).

THEOREM 5.4. Let M be an open convex subset of X and f : M → R be
locally Lipschitz on M. Suppose that η is affine in the first argument and for
each x ∈M,η(x, x)=0, and for each x, y ∈M

f (x)>f (y)⇒∃x̄ ∈ (x, y), ∃u∈ ∂cf (x̄), 〈u, η(x, x̄)〉>0.

If ∂cf be invariant pseudomonotone with respect to η on M, then f is pseud-
oinvex with respect to η on M.

Proof. Suppose that ∂cf is invariant pseudomonotone with respect to η

on M. Let x, y ∈M, and

f (y)<f (x). (5.15)

By our conditions, there exist λ̄∈ (0,1) and u∈∂cf (x̄) such that 〈u, η(x, x̄)〉>
0, where x̄ = λ̄x + (1− λ̄)y. Invariant pseudomonotonicity of ∂cf implies that
for each ζ ∈ ∂cf (x), we have

〈ζ, η(x̄, x)〉<0. (5.16)
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By the hypothesis on η, we have

λ̄〈ζ, η(x, x)〉+ (1− λ̄)〈ζ, η(y, x)〉=〈ζ, η(x̄, x)〉<0.

Since 0<λ̄<1 and η(x, x)=0, we have

〈ζ, η(y, x)〉<0.

Then f is pseudoinvex with respect to η on M.

REMARK 5.4. Theorem 5.4 improves Theorem 2.2 of Peng (2005).

In the following theorem we obtain an analogous result to Theorem 2.1 of
Peng (2005) in our context.

THEOREM 5.5. Let M be an open convex subset of X and f : M → R be
locally Lipschitz on M. Suppose that η is affine in the first argument and for
each x ∈M,η(x, x)=0, and for each x �=y,

f (x)�f (y)⇒∃x̄ ∈ (x, y), ∃u∈ ∂cf (x̄), 〈u, η(x, x̄)〉�0.

If ∂cf be strictly invariant pseudomonotone with respect to η on M, then f

is strictly pseudoinvex with respect to η on M.
Proof. Suppose that ∂cf is strictly invariant pseudomonotone with

respect to η on M. Let x, y ∈M,x �=y and

f (y)�f (x). (5.17)

By our conditions, there exist λ̄∈ (0,1) and u∈∂cf (x̄) such that 〈u, η(x, x̄)〉�
0, where x̄ = λ̄x + (1 − λ̄)y. Strictly invariant pseudo monotonicity of ∂cf

implies that for each ζ ∈ ∂cf (x), we have

〈ζ, η(x̄, x)〉<0. (5.18)

By our hypothesis on η, we obtain

λ̄〈ζ, η(x, x)〉+ (1− λ̄)〈ζ, η(y, x)〉=〈ζ, η(x̄, x)〉<0.

Since 0<λ̄<1 and η(x, x)=0, we have

〈ζ, η(y, x)〉<0.

Thus, f is strictly pseudoinvex with respect to η on M.
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6. Applications

In this section we establish some applications of our results for the solu-
tion of the variational like inequality problems as well as the mathematical
programming problems. We give first some definitions.

DEFINITION 6.1. Let M be subset of a topological space X. A set-valued
mapping. T : X → 2X∗

is said to be upper semi-continuous, if for each
weak∗-topology closed set B ⊂ X∗, T −(B) = {x ∈ X: T (x) ∩ B �= ∅} is closed
in X. T is called upper hemicontinuous if its restriction to line segments of
its domain is upper semicontinuous where E∗ is equipped with the weak∗-
topology.

The following Lemmas can be viewed as extensions and generalizations
of Minty’s Lemma; see Lemma 2.3 of Noor (2005).

LEMMA 6.1. Let K be an invex set with respect to η and T : K → 2X∗
be

an invariant pseudomonotone map with respect to η. Suppose that

(1) T is upper hemicontinuous,
(2) η satisfies Assumption C.

Then for x ∈K, the following assertions are equivalent:

(a) for each y ∈K, there exists u∈T (x), such that 〈u, η(y, x)〉�0.
(b) for each y ∈K and for each v ∈T (y), we have 〈v, η(x, y)〉�0.

Proof. (a) ⇒ (b) deduces from the definition of invariant pseudomono-
tone with respect to η. Conversely, let x ∈ K be a solution of (b) and
y ∈K, we consider wt =x + tη(y, x), with 0 <t < 1, Hence by (b), for each
vt ∈T (wt), we have

〈vt , η(x,wt)〉�0.

From Assumption C, we have

η(x,wt)=η(x, x + tη(y, x))=−tη(y, x),

then

〈vt , η(y, x)〉�0 for each t ∈ (0,1) and each vt ∈T (wt).

Suppose in the contrary, 〈u, η(y, x)〉 < 0 for all u ∈ T (x). Then by upper
hemicontinuity of T , we have 〈u, η(y, x)〉<0 for all u∈T (wt) and for suffi-
ciently small t , which is a contradiction.
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DEFINITION 6.2. The function η:X×X→X is called a skew function, if
η(x, y)+η(y, x)=0 for each x, y ∈X.

LEMMA 6.2. Let K be a convex subset of X and T :K →2X∗
be an invari-

ant pseudomonotone operator with respect to η. Suppose that

(1) T is upper hemicontinuous,
(2) η is affine in the first argument and skew function.

Then for x ∈K, the following assertions are equivalent

(a) for each y ∈K, there exists u∈T (x) such that 〈u, η(y, x)〉�0.
(b) for each y ∈K and for each v ∈T (y), we have 〈v, η(x, y)〉�0.

Proof. (a)⇒ (b) deduces from the definition of invariant pseudomonoto-
nicity of T with respect to η on K. Conversely, let x ∈K be a solution of
(b) and y ∈K. We consider wt = ty + (1− t)x, with 0<t <1. Hence by (b),
for each vt ∈T (wt), we have

〈vt , η(x,wt)〉�0.

Since η is skew,

〈vt , η(wt , x)〉�0.

As η is affine in the first argument and η is skew, hence η(u,u)=0, for each
u∈K and therefore,

〈vt , η(y, x)〉�0.

Suppose in the contrary, 〈u, η(y, x)〉 < 0 for all u ∈ T (x). Then by upper
hemicontinuity of T , we have 〈u, η(y, x)〉<0 for all u∈T (wt) and for suffi-
ciently small t , which is a contradiction.

The mathematical programming problem (MP) is defined as

(MP) min f (x)

s.t. x ∈K,

where f :K ⊆X →R.

THEOREM 6.1. Let f :K →R be locally Lipschitz on K where K is an in-
vex set. For x ∈K, set

(1) for each y ∈K, there exists u∈ ∂cf (x) such that 〈u, η(y, x)〉�0,
(2) x is a solution of the (MP) Problem,
(3) for each y ∈K and for each v ∈ ∂cf (y) we have 〈v, η(x, y)〉�0.
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Then we have;

(a) If f is pseudoinvex with respect to η on K, then (1)⇒ (2).
(b) If f is quasiinvex with respect to η on K, then (2)⇒ (3).
(c) If f is invex with respect to η on K and either η satisfies Assumption C

or η is affine in the first argument, skew function and K is also convex,
then (1), (2) and (3) are equivalent.

(d) If f is strictly pseudoinvex with respect to η on K and either η satisfies
Assumption C or η is affine in the first argument, skew function and K

is also convex, then (1), (2) and (3) are equivalent and in this case x is
unique.

Proof.

(a) Follows from Definition 5.1.
(b) Follows from Definition 4.3.
(c) If f is invex with respect to η on K, then f is pseudoinvex with

respect to η on K and by (a), (1) ⇒ (2). Since f is quasiinvex with
respect to η on K then by (b), (2) ⇒ (3), and by Lemma 3.1 ∂cf

is invariant monotone and hence it is invariant pseudomonotone with
respect to η on K. Now by Lemmas 2.1, 6.1 and 6.2, we have (3)⇒
(1).

(d) If f is strictly pseudoinvex with respect to η on K, then f is pseudoin-
vex with respect to η on K and hence by (a), (1)⇒ (2). By Definitions
4.3, 5.1, we have f is quasiinvex with respect to η on K, therefore by
(b), (2) ⇒ (3). Lemma 5.1 implies ∂cf is a strictly invariant pseudo-
monotone operator and hence it is an invariant pseudomonotone oper-
ator with respect to η on K, then by Lemmas 2.1, 6.1 and 6.2, we have
(3)⇒ (1). The uniqueness of x follows from Definition 5.1.

Now we will establish a solution for the variational-like problems.

DEFINITION 6.3. A set valued map � : M → 2M is called KKM-map if
for every finite subset {x1, x2, . . . , xn} of M,

conv({x1, x2, . . . , xn})⊂
n⋃

i=1

�(xi).

In the following we obtain a refinement of Theorem 5.1 of Garzon et al.
(2003) in non-compact setting.

THEOREM 6.2. Let M be a non-empty closed convex subset of X and T :
M → 2X∗

be an invariant pseudomonotone map with respect to η. Suppose
that:
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(1) T is upper hemicontinous,
(2) η is affine and continuous in the first argument and skew function,
(3) there is a non-empty compact set K ⊆M, and there is a non-empty com-

pact convex set B ⊆ M such that for each x ∈ M\K, there exist y ∈ B

and u∈T (y) such that 〈u, η(x, y)〉>0.

Then there is x0 ∈ M, such that for each y ∈ M, there exists u ∈ T (x0) such
that 〈u, η(y, x0)〉�0.

Proof. Define the set-valued map �̂ :M →2M , as

�̂(y)={x ∈M :∃u∈T (x) s.t. 〈u, η(y, x)〉�0}, for each y ∈M.

First, we prove that �̂(x) is a KKM-map.
Suppose that {y1, y2, . . . , yn}⊂M,

∑n
i=1 αi =1, αi �0, i =1,2, . . . , n, and

y =
n∑

i=1

αiyi /∈
n⋃

i=1

�̂(yi).

Then we have

∀i =1,2, . . . , n ∀v ∈T (y), 〈v, η(yi, y)〉<0.

Since η is affine in the first argument,

∀v ∈T (y),

〈
v, η

(
n∑

i=1

αiyi, y

)〉
=

n∑
i=1

αi〈v, η(yi, y)〉<0,

then

∀v ∈T (y), 〈v, η(y, y)〉<0,

which contradicts the assumption of skewness, which demands that

η(y, y)=0, ∀y ∈M.

So we derive

conv({y1, y2, . . . , yn})⊂
n⋃

i=1

�̂(yi)

and therefore, �̂(x) is a KKM-map.
Define the set-valued map �:M →2M , such that

�(y)={x ∈M:∀v ∈T (y), 〈v, η(x, y)〉�0} for all y ∈M.
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Since T is (IPM), then �̂(y)⊂�(y) for all y ∈M and since �̂ is a KKM-
map, then � is also a KKM-map.

On the other hand by Lemma 6.2,

⋂
y∈M

�̂(y)=
⋂
y∈M

�(y).

Moreover, �(y) for every y ∈M is closed, since η is continuous in the first
argument. Condition (3) implies that

⋂
y∈B �(y) ⊆ K. Therefore, Theorem

2.1 of Fakhar and Zafarani (2005) implies that

⋂
y∈M

�̂(y)=
⋂
y∈M

�(y) �=∅.

Hence, there exists x0 ∈ M such that for each y ∈ M there exists u ∈ T (x0)

such that 〈u, η(y, x0)〉�0.

REMARK 6.2. Condition (3) can be replaced by the following condition:
(3′) there exist a non-empty compact subset K of M and a finite subset A

of M such that for every x ∈M\K, there exist y ∈A and u∈T (y) such that
〈u, η(x, y)〉> 0. In fact in this case we can use Lemma 2.1 of Fakhar and
Zafarani (2004) instead of Theorem 2.1 of Fakhar and Zafarani (2005).

In the next result we will establish the uniqueness of the above solution.

COROLLARY 6.1. Let M be a non-empty convex subset of X and T :M →
2X∗

be a strictly variant pseudomonotone operator with respect to η. Suppose
that conditions (1–3) of Theorem 6.2 hold. Then there is a unique x0 ∈M such
that for each y ∈M there exists u∈T (x0) such that 〈u, η(y, x0)〉�0.

Proof. As (SIPM)⇒ (IPM) and by Theorem 6.2 we have the existence of
a solution x0. Now we prove the uniqueness.

Suppose that we have two distinct solutions, x0, x1 ∈M. Then there exists
u∈T (x0) such that

〈u, η(x1, x0)〉�0, (6.1)

and there exists v ∈T (x1) such that

〈v, η(x0, x1)〉�0. (6.2)

Since T is (SIPM), it follows from (6.1) that 〈v, η(x0, x1)〉< 0, which con-
tradicts (6.2).
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